3 assignments:
 - Review of Algebra, Geometry & Trigonometry Worksheet Packet
 - Going into AP Calculus, there are certain math skills necessary in order to be successful for the year and ultimately on the AP exam. This assignment has been designed for you to review/relearn/learn those topics so that you will be ready to learn calculus. I have included websites to refer to if you need help.
 - Don’t fake your way through any of these problems because you will need to understand everything in this very well. If you do not fully understand the topics in this packet, it is possible that you will get calculus problems wrong in the future - not because you do not understand the calculus concept, but because you do not understand the algebra or trigonometry behind it.
 - We will go over the packet during the first summer meeting, but cannot cover all of the material so do not depend on the review to learn everything.
 - For this packet, you must show all of your work (on separate sheets if necessary) and do not rely on a calculator to do all of the work for you. Half of the AP exam does not allow any calculator at all.
 - Help sites:
 - Math Camp #1: L2.1-L2.2 textbook assignment
 - Math Camp #2: L2.3-L2.4 textbook assignment

- Attendance:
 - Student must attend both summer meeting dates.
 - Exceptions – student must submit proper documentation if the attendance requirement can’t be met.
 - “Couldn’t get off work...” will not be accepted.

- Time line-

<table>
<thead>
<tr>
<th>Week of S.T.S.P. PreCalculus Classroom Visits</th>
<th>Summer I Meeting (June 25th, 2:30 p.m. to 4:00 p.m.) Library</th>
<th>Summer II Meeting (July 14th, 2:30 p.m. to 4:00 p.m.) Library</th>
<th>Last Assignment Drop Off-No meeting (July 17th)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hand out assignment #1</td>
<td>Collect assignment #1</td>
<td>Collect assignment #2</td>
<td>Collect assignment #3</td>
</tr>
<tr>
<td>Hand out course syllabus and Summer assignment. Student and parent signature required.*</td>
<td>Hand out textbooks and calculators.</td>
<td>Lecture L2.3-L2.4</td>
<td>Assignment to be placed in teacher mailbox, faxed to school, or scanned and emailed.</td>
</tr>
<tr>
<td>Lecture L2.1-L2.2</td>
<td>Hand out assignment #3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Collected before last day of school

- Notify Student Services of any students that have missed any of the deadline dates or other requirements of the summer assignment so their schedules can be modified before August 1st.
Skill A Writing an equation of a line in slope-intercept form

Recall The slope-intercept form of a line is \(y = mx + b \).

Example
Write an equation for each line.
\begin{align*}
a. & \quad \text{containing } (0, 1) \text{ and with a slope of } -2 \\
b. & \quad \text{containing } (3, -4) \text{ and } (9, 0)
\end{align*}

Solution
\begin{align*}
a. & \quad \text{The slope, } m, \text{ is given as } -2. \text{ The line contains } (0, 1), \text{ so this point is the y-intercept, } \text{or } b \text{ is } 1. \text{ Substituting these numbers into the equation gives } y = -2x + 1. \\
b. & \quad \text{First find the slope. } \\
& \quad m = \frac{-4 - 0}{3 - 9} = \frac{-4}{-6} = \frac{2}{3} \\
& \quad \text{Then substitute the coordinates of one of the given points into the equation and solve for } b. \\
& \quad \text{For the point } (9, 0): \\
& \quad 0 = \frac{2}{3}(9) + b \\
& \quad 0 = 6 + b \\
& \quad b = -6 \\
& \quad \text{Substituting this number for } b \text{ and } \frac{2}{3} \text{ for } m \text{ into the equation } y = mx + b \text{ gives the equation } y = \frac{2}{3}x - 6.
\end{align*}

For each equation, find the slope and the y-intercept.
\begin{align*}
1. & \quad y = 3x - 1 \quad & 2. & \quad y = \frac{1}{2}x + 2 \quad & 3. & \quad y = -x + \frac{1}{2}
\end{align*}

Write an equation in slope-intercept form for each line.
\begin{align*}
4. & \quad \text{with a slope of } 2 \text{ and a y-intercept of } -1 \\
5. & \quad \text{containing } (0, -3) \text{ and with a slope of } \frac{1}{3}
\end{align*}

Write an equation in slope-intercept form for the line that contains each pair of points.
\begin{align*}
6. & \quad (1, 1) \text{ and } (3, 5) \\
7. & \quad (2, -4) \text{ and } (-1, 5) \\
8. & \quad (2, 4) \text{ and } (-4, 1) \\
9. & \quad (1, 0) \text{ and } (3, 2)
\end{align*}
Skill B Writing an equation of a line in point-slope form

Recall The point-slope form for an equation of a line is $y - y_1 = m(x - x_1)$.

Example Write an equation for the line through $(1, -1)$ and $(-1, 5)$
a. in point-slope form.
b. in slope-intercept form.

Solution
a. First find m.

$$m = \frac{\text{difference in } y\text{-values}}{\text{difference in } x\text{-values}} = \frac{5 - (-1)}{(-1) - 1} = \frac{6}{-2} = -3$$

Substitute the slope and one of the points into the point-slope equation.

$$y - y_1 = m(x - x_1)$$
$$y - (-1) = -3(x - 1)$$
$$y + 1 = -3(x - 1)$$
Use the point $(1, -1)$.
Simplify.

b. Rewrite the equation in the form $y = mx + b$.

$$y + 1 = -3(x - 1)$$
$$y + 1 = -3x + 3$$
$$y = -3x + 2$$
Distributive Property
Subtract 1 from each side.

Write an equation for each line in point-slope form.

1. containing $(4, -1)$ and with a slope of $\frac{1}{2}$ ________________________________

2. crossing the x-axis at $x = -3$ and the y-axis at $y = 6$ ________________________________

3. containing the points $(-6, -1)$ and $(3, 2)$ ________________________________

Rewrite each equation in slope-intercept form.

4. the line from Exercise 1. ________________________________

5. the line from Exercise 2. ________________________________

6. the line from Exercise 3. ________________________________

7. In what situations would you find it easier to use point-slope form, and in what situations would you find it easier to use slope-intercept form? ________________________________

◆ Skill C Factoring trinomials by choosing factor pairs of the constant

Recall Another way to factor a trinomial, such as \(x^2 - 5x - 6 \), is to first make a list of the pairs of factors of the constant. Then choose the right combination to complete the factors of the trinomial.

◆ Example
Use the constant’s factor pairs to factor \(x^2 - 5x - 6 \).

◆ Solution
List each pair of factors of \(-6\) along with their sum.

\[
\begin{array}{c|c}
\text{Factors of } -6 & \text{Sum of the factors} \\
6 \text{ and } -1 & 5 \\
3 \text{ and } -2 & 1 \\
2 \text{ and } -3 & -1 \\
1 \text{ and } -6 & -5 \\
\end{array}
\]

The sum of 1 and \(-6\) is \(-5\). Use the combination of 1 and \(-6\) to form the factors. Thus, \(x^2 - 5x - 6 = (x + 1)(x - 6) \).

Factor each trinomial. If the trinomial cannot be factored, write prime.

1. \(x^2 - x - 2 \)
2. \(x^2 + 3x - 4 \)
3. \(x^2 + 4x + 3 \)

4. \(x^2 - 4x + 3 \)
5. \(x^2 + 2x - 8 \)
6. \(x^2 + x - 20 \)

7. \(x^2 + 2x - 15 \)
8. \(x^2 - 3x + 10 \)
9. \(x^2 - x - 12 \)

10. \(x^2 + 6x + 8 \)
11. \(x^2 - 20x + 36 \)
12. \(x^2 + 2x - 24 \)
Skill D Find the zeros of a polynomial function by factoring

Recall The zeros of a function are the values of x that make y equal to 0.

◆ Example 1
Find the zeros of the function \(y = (x - 2)(x + 5) \).

◆ Solution
Let \(y = 0 \). Then use the Zero-Product Property to solve for \(x \).

\[
(x - 2)(x + 5) = 0 \\
(x - 2) = 0 \quad \text{or} \quad (x + 5) = 0 \\
x = 2 \quad \text{or} \quad x = -5
\]

The zeros of \(y = (x - 2)(x + 5) \) are 2 and -5.

Recall A quadratic polynomial can be factored into two binomials.

◆ Example 2
Solve the equation \(x^2 - x - 6 = 0 \).

◆ Solution
Since \(x^2 - x - 6 \) can be factored into \((x + 2)(x - 3) \), you can rewrite \(x^2 - x - 6 = 0 \) as \((x + 2)(x - 3) = 0 \). Solve the equation \((x + 2)(x - 3) = 0 \).

\[
x + 2 = 0 \quad \text{or} \quad x - 3 = 0 \\
x = -2 \quad \text{or} \quad x = 3
\]

The solutions to \(x^2 - x - 6 = 0 \) are -2 and 3.

Solve by factoring.

1. \(x^2 - 4x - 12 = 0 \)

2. \(x^2 - 6x + 9 = 0 \)

3. \(x^2 - 9x + 14 = 0 \)

4. \(x^2 + 6x + 5 = 0 \)

5. \(x^2 - 7x + 10 = 0 \)

6. \(x^2 - 36 = 0 \)

7. \(x^2 + 8x + 16 = 0 \)

8. \(x^2 - x - 12 = 0 \)

9. \(9x^2 - 1 = 0 \)

10. \(4x^2 + 4x + 1 = 0 \)
Skill E Using the quadratic formula to solve equations

Recall The solutions for a quadratic equation written in the form $ax^2 + bx + c = 0$, where $a \neq 0$, can be found by using the quadratic formula, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Example Use the quadratic formula to solve $x^2 - 8x + 15 = 0$ for x.

Solution For $x^2 - 8x + 15 = 0$, a is 1; b is -8, and c is 15. Substitute these values in the quadratic formula.

$$x = \frac{-(-8) \pm \sqrt{(-8)^2 - (4)(1)(15)}}{2(1)}$$

$$= \frac{8 \pm \sqrt{64 - 60}}{2}$$

$$= \frac{8 \pm \sqrt{4}}{2}$$

$$= \frac{8 \pm 2}{2}$$

$x = 3$ or $x = 5$

The solutions are 3 and 5.

Use the quadratic formula to solve each equation.

1. $x^2 - 5x + 4 = 0$

2. $x^2 - 2x - 24 = 0$

3. $x^2 + 6x + 9 = 0$

4. $x^2 + 3x - 10 = 0$

5. $2x^2 - x - 6 = 0$

6. $2x^2 + x - 4 = 0$
Skill F Using the quadratic formula to find the zeros of quadratic functions

Recall The zeros of a quadratic function written in the form \(y = ax^2 + bx + c = 0 \), where \(a \neq 0 \), can be found by using the quadratic formula.

Example

Use the quadratic formula to find the zeros of \(y = 2x^2 - 5x - 3 \).

Solution

For \(2x^2 - 5x - 1 \), \(a \) is 2; \(b \) is -5, and \(c \) is -3. Substitute these values in the quadratic formula.

\[
\frac{-(-5) \pm \sqrt{(-5)^2 - (4)(2)(-3)}}{2(2)} = \frac{5 \pm \sqrt{25 + 24}}{4} = \frac{5 \pm \sqrt{49}}{4} = \frac{5 \pm 7}{4}
\]

The zeros are \(-\frac{1}{2}\) and 3.

Use the quadratic formula to find the zeros of each function.

1. \(y = x^2 + 2x - 8 \)
2. \(y = 2x^2 - x - 15 \)
3. \(y = 4x^2 - 8x + 3 \)

Skill G Using the discriminant to determine the number of solutions

Recall When a quadratic equation is written in the form \(ax^2 + bx + c = 0 \), where \(a \neq 0 \), the expression \(b^2 - 4ac \) is called the discriminant of the quadratic formula.

If \(b^2 - 4ac > 0 \), there are two solutions.
If \(b^2 - 4ac = 0 \), there is one solution.
If \(b^2 - 4ac < 0 \), there are no real number solutions.

Example

What does the discriminant tell you about \(3x^2 - 2x + 9 = 0 \)?

Solution

For \(3x^2 - 2x + 9 = 0 \), \(a \) is 3; \(b \) is -2, and \(c \) is 9.

Thus, \(b^2 - 4ac = (-2)^2 - (4)(3)(9) = 4 - 108 = -104 \)

\(-104 < 0 \), so the equation \(3x^2 - 2x + 9 = 0 \) has no real solutions.

Give the value of each discriminant. What does the discriminant tell you about the function?

1. \(y = 4x^2 + 4x + 1 \)
2. \(y = x^2 + 5x + 4 \)
3. \(y = x^2 + 5x + 8 \)
Skill H Writing and evaluating functions

Recall The value of \(f(x) = x^2 + 5 \) depends on the value of \(x \).

◆ Example 1
Sarah uses an internet server which charges $12.50 per month plus $0.60 for each hour over 20 hours that she uses it during the month. Write this relation in function notation. How much will she be charged for using the service for 38 hours in April?

◆ Solution
Let \(h = \) number of hours over 20. Thus, the function is as follows.
\[
\begin{align*}
f(h) &= 12.50 + 0.60h \\
f(18) &= 12.50 + 0.60(18) \quad \text{where} \ h = 18 \\
f(18) &= 23.30 \\
\end{align*}
\]
The charge for April will be $23.30.

◆ Example 2
If \(g(x) = x^2 + 3x \), find \(g(-5) \).

◆ Solution
\(g(-5) \) means replace \(x \) with the value \(-5\) and evaluate \(g(x) \).
\[
\begin{align*}
g(-5) &= (-5)^2 + 3(-5) \\
&= 25 - 15 \\
&= 10 \\
\end{align*}
\]
Thus, \(g(-5) = 10 \).

Let \(f(x) = 5 - \frac{2x}{3} \) and \(g(x) = \frac{1}{2}x^2 + 3x \). Evaluate each function.

1. \(f(6) \) \hspace{2cm} 2. \(f(0) \)
3. \(f\left(\frac{1}{2}\right) \) \hspace{2cm} 4. \(g(1) \)
5. \(g(-2) \) \hspace{2cm} 6. \(g\left(\frac{1}{2}\right) \)
7. \(f(1) + g(0) \) \hspace{2cm} 8. \(g(4) - f(5) \)
9. \(f(0) \cdot g(0) \) \hspace{2cm} 10. \(g(-6) \cdot f(-6) \)
Using the four basic operations on functions to write new functions

Recall: To write the sum, difference, product, or quotient of two functions, \(f \) and \(g \), write the sum, difference, product, or quotient of the expressions that define \(f \) and \(g \). Then simplify.

Example: Let \(f(x) = x^2 + 3x + 2 \) and \(g(x) = 5x - 1 \). Write an expression for each function.

- \((f + g)(x) \)
- \((f - g)(x) \)
- \((fg)(x) \)
- \(\left(\frac{f}{g} \right)(x) \)

Solution:

- \((f + g)(x) = f(x) + g(x) \)
 \[= (x^2 + 3x + 2) + (5x - 1) \]
 \[= x^2 + 8x + 1 \]
 Combine like terms.

- \((f - g)(x) = f(x) - g(x) \)
 \[= (x^2 + 3x + 2) - (5x - 1) \]
 \[= x^2 + 3x + 2 - 5x + 1 \]
 \[= x^2 - 2x + 3 \]
 Combine like terms.

- \((fg)(x) = f(x) \cdot g(x) \)
 \[= (x^2 + 3x + 2)(5x - 1) \]
 \[= (x^2 + 3x + 2)(5x) + (x^2 + 3x + 2)(-1) \]
 \[= 5x^3 + 15x^2 + 10x - x^2 - 3x - 2 \]
 \[= 5x^3 + 14x^2 + 7x - 2 \]
 Distributive Property

- \(\left(\frac{f}{g} \right)(x) = \frac{f(x)}{g(x)}, \text{ where } g(x) \neq 0 \)
 \[= \frac{x^2 + 3x + 2}{5x - 1} \text{, where } x \neq \frac{1}{5} \]

Let \(f(x) = 3x^2 + 2 \), \(g(x) = 2x - 1 \), and \(h(x) = x^2 + 5x \). Find each new function, and state any domain restrictions.

1. \((f + g)(x) \)

2. \((f - h)(x) \)

3. \((h - g)(x) \)

4. \((gh)(x) \)

5. \((hg)(x) \)

6. \((f + h)(x) \)

7. \(\left(\frac{f}{g} \right)(x) \)

8. \(\left(\frac{h}{g} \right)(x) \)
Finding the composite of two functions

Recall
To write an expression for the composite function \((f \circ g)(x)\), replace each \(x\) in the expression for \(f\) with the expression defining \(g\). Then simplify the result.

Example
Let \(f(x) = 5x\) and \(g(x) = 2x^2 - 3\). Find \((f \circ g)(2)\) and \((g \circ f)(2)\). Then write expressions for \((f \circ g)(x)\) and \((g \circ f)(x)\).

Solution
\((f \circ g)(2):\)
\[g(2) = 2(2)^2 - 3 = 5 \]
\[f(g(2)) = f(5) = 5(5) = 25 \]
Thus, \((f \circ g)(2) = 25\).
\((g \circ f)(2):\)
\[f(2) = 5(2) = 10 \]
\[g(f(2)) = g(10) = 2(10)^2 - 3 = 197 \]
Thus, \((g \circ f)(2) = 197\).

To write expressions for \((f \circ g)(x)\) and \((g \circ f)(x)\), use the variable \(x\) instead of a particular number.

\[(f \circ g)(x) = f(g(x)) = f(2x^2 - 3) = 5(2x^2 - 3) = 10x^2 - 15\]
\[(g \circ f)(x) = g(f(x)) = g(5x) = 2(5x)^2 - 3 = 50x^2 - 3\]

Let \(f(x) = x^2 - 1\), \(g(x) = 3x\), and \(h(x) = 5 - x\). Find each composite function.

1. \((f \circ g)(x)\)

2. \((g \circ f)(x)\)

3. \((h \circ f)(x)\)

4. \((h \circ g)(x)\)

5. \((g \circ g)(x)\)

6. \((h \circ h)(x)\)

7. \((g \circ h)(4)\)

8. \((f \circ f)(-3)\)

9. \((f \circ (g \circ h))(1)\)

10. \((g \circ (g \circ g))(5)\)
Skill

K

Evaluating and applying rounding-up, rounding-down, and absolute value functions

Recall

The rounding-up function rounds a decimal value to the next highest integer.

\[[-2.3] = -2 \]

◆ Example 1

A long distance telephone company advertises that weekend calls cost $0.10 per minute. Each fraction of a minute is rounded up to the next whole minute. Write this as a rounding-up function. Then find the cost of a 23.5-minute call.

◆ Solution

\[f(m) = 0.1\lceil m \rceil \quad \text{where } m = \text{number of minutes} \]

\[f(23.5) = 0.1\lceil 23.5 \rceil \]

\[= 0.1(24) \]

\[= 2.40 \]

24 is the next highest integer after 23.5

The call will cost $2.40.

Recall

The rounding-down function rounds a decimal value to the next lowest integer.

\[[-2.3] = -3 \]

◆ Example 2

Evaluate \([-3.7]\).

◆ Solution

\[[-3.7] = -4 \quad -4 \text{ is the next integer to the left of } -3.7 \]

Recall

Absolute value means distance from 0.

\[|{-2.3}| = 2.3 \]

◆ Example 3

Evaluate \(|{-12.3}|\).

◆ Solution

\[|{-12.3}| = 12.3 \quad -12.3 \text{ is at a distance } 12.3 \text{ units from } 0 \]

Evaluate.

1. \(|4.2|\)

2. \(|4.2|\)

3. \(|4.2|\)

4. \(|{-1.8}|\)

5. \(|{-1.8}|\)

6. \(|{-1.8}|\)

7. \(|2| + |{-7}|\)

8. \(|2| - |{-7}|\)

9. \(|{-2.3}| + |{-1.8}|\)

10. \(|2.7| - |{-3.4}|\)

11. \(|{-3}| - |{-3}|\)

12. \(|{-8.5}| + |3.7|\)
Skill: Graphing piecewise, step, and absolute-value functions

Recall: A piecewise function in \(x \) is a function defined by different expressions in \(x \) on different intervals for \(x \).

Example
Graph this piecewise function.
\[
f(x) = \begin{cases}
|x|, & \text{if } -5 \leq x < -2 \\
[x], & \text{if } -2 \leq x < 2 \\
2x - 5, & \text{if } 2 \leq x \leq 5
\end{cases}
\]

Solution

<table>
<thead>
<tr>
<th>(x)</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>-2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y =</td>
<td>x</td>
<td>)</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>-2</th>
<th>-1.5</th>
<th>-1</th>
<th>-0.5</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y = [x])</td>
<td>-2</td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y = 2x - 5)</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Graph each function.

1. \(f(x) = \begin{cases}
x + 3, & \text{if } x < 0 \\
-2x + 5 & \text{if } x \geq 0
\end{cases} \)

2. \(f(x) = \begin{cases}
\frac{1}{2}x, & \text{if } -4 \leq x \leq 2 \\
2x - 3 & \text{if } x > 2
\end{cases} \)

3. \(f(x) = \begin{cases}
|x|, & \text{if } x \leq 1 \\
2 - |x - 2| & \text{if } x > 1
\end{cases} \)

4. \(f(x) = \begin{cases}
[x] & \text{if } -2 \leq x \leq 1 \\
|x| & \text{if } 1 < x \leq 4
\end{cases} \)
Skill M

Recall

The common logarithm, \(\log_{10} x \), is usually written as \(\log x \).

Example

Solve each equation.

\(\textbf{a. } 3^x = 81 \quad \textbf{b. } 5^x = 75 \quad \textbf{c. } 7^{x+1} = 150 \)

Solution

\(\textbf{a. } 3^x = 81 \)

Since 81 is a power of 3, use powers of 3.

\[
3^4 = 81 \\
x = 4
\]

\(\text{One-to-One Property of Exponential Functions} \)

\(\textbf{b. } 5^x = 75 \)

Since 75 is not a power of 5, use logarithms to solve this equation.

\[
\log 5^x = \log 75 \\
x \log 5 = \log 75 \\
x = \frac{\log 75}{\log 5} \\
x \approx 2.68
\]

Check: \(5^{2.68} \approx 75 \)

\(\textbf{c. } 7^{x+1} = 150 \)

\[
\log 7^{x+1} = \log 150 \\
(x+1) \log 7 = \log 150 \\
x + 1 = \frac{\log 150}{\log 7} \\
x = \frac{\log 150}{\log 7} - 1 \\
x \approx 1.57
\]

Solve each equation. Round your answers to the nearest hundredth.

1. \(7^x = 80 \)
2. \(5^x = 10 \)
3. \(6^x = 1296 \)

4. \(4^{x+1} = 100 \)
5. \(2^{x-3} = 25 \)
6. \(3^{x+4} = 27 \)

7. \(6^{2x-7} = 216 \)
8. \(5^{3x-1} = 49 \)
9. \(10^{x+5} = 125 \)
Skill N Finding logarithms with bases other than 10
(You will need a calculator.)

Recall The equation \(x = \log_b y \) is equivalent to \(b^x = y \).

◆ Example 1
Find \(\log_3 40 \) using your calculator.

◆ Solution
Since calculators do not work in base 3, you can change this problem to a base 10 logarithm problem.
\[
x = \log_3 40 \quad \Rightarrow \quad 3^x = 40 \quad \text{base 10 logarithms}
\]
\[
\log 3^x = \log 40
\]
\[
x \log 3 = \log 40
\]
\[
x = \frac{\log 40}{\log 3}
\]
\[
x \approx 3.36 \quad \text{Use a calculator.}
\]

Recall The change-of-base formula is \(\log_b x = \frac{\log_a x}{\log_a b} \), where \(a \) can be any permissible logarithmic base.

◆ Example 2
Find \(\log_5 68 \) using your calculator.

◆ Solution
To find \(\log_5 68 \), use logarithms with base 10. That is, use \(a = 10 \). Then you can use a calculator’s built-in base 10 logarithms.
\[
x = \log_5 68 \quad \Rightarrow \quad x = \frac{\log 68}{\log 5}
\]
\[
x \approx 2.62
\]

Evaluate each logarithmic expression to the nearest hundredth.

1. \(\log_6 18 \) 2. \(\log_5 100 \) 3. \(\log_2 400 \)

4. \(\log_8 512 \) 5. \(\log_{10} 215 \) 6. \(\log_{16} 24 \)

7. \(\log_{13} 110 \) 8. \(\log_{2.5} 76 \) 9. \(\log_\frac{1}{16} 329 \)
Skill 0 Using the inverse functions \(f(x) = e^x \) and \(g(x) = \ln x \) to solve equations

Recall

\[\ln e \] is the base \(e \) logarithm of \(x \). Therefore, \(\ln e = 1 \), just like \(\log_{10} 10 = 1 \) (base 10).

Example 1
Simplify each expression.

\[\text{a. } e^{\ln 4} \hspace{1cm} \text{b. } \ln e^2 \]

Solution

\[\text{a. } \text{Since } y = e^x \text{ and } y = \ln x \text{ are inverse functions, } e^{\ln x} = x. \text{ So, } e^{\ln 4} = 4. \]

\[\text{b. } \text{Because of inverse functions, } \ln e^x = x. \text{ So } \ln e^2 = 2. \]

Example 2
Solve for \(x \).

\[\text{a. } 2e^{2x} + 1 = 60 \hspace{1cm} \text{b. } \ln x = 3.2 \]

Solution

\[\text{a. } 2e^{2x} + 1 = 60 \]
\[e^{2x} + 1 = 30 \]
\[\ln e^{2x} + 1 = \ln 30 \]
\[2x + 1 = \ln 30 \]
\[x = \frac{\ln 30 - 1}{2} \]
\[x \approx 1.20 \]

\[\text{b. } \ln x = 3.2 \]
\[e^{\ln x} = e^{3.2} \]
\[x = e^{3.2} \]
\[x = 24.53 \]

Simplify each expression.

1. \(e^{\ln 4} \)
2. \(e^{\ln 15} \)
3. \(e^{2 \cdot \ln 3} \)

4. \(\ln e^9 \)
5. \(\ln e^5 \)
6. \(5 \ln e^3 \)

Solve each equation for \(x \) by using the natural logarithmic function.

7. \(e^x = 34 \)
8. \(3e^x = 120 \)
9. \(e^x - 8 = 51 \)

10. \(\ln x = 2.5 \)
11. \(\ln(3x - 2) = 2.8 \)
12. \(\ln e^x = 5 \)
Identifying parent functions in transformations

Recall
Transformations of a function are indicated by the addition or subtraction of constants from the variable term or from the entire function or by multiplication or division of the variable term by a constant.

◆ Example
In the following equations, identify the parent function:

a. \(y = -3|x - 2| + 5 \)

b. \(y = -(x + 3)^2 - 4 \)

◆ Solution

a. Identify the additions, multiplications, subtractions, or divisions that occur. If the addition of 5 is removed, the equation becomes \(y = -3|x - 2| \). If the multiplication by \(-3\) is removed, the equation becomes \(y = |x - 2| \). Finally, if the subtraction of 2 is removed, the equation becomes \(y = |x| \). This is the absolute-value parent function.

b. Start with \(y = -(x + 3)^2 - 4 \) and remove the additions and subtractions, starting with the subtraction of 4 outside the parentheses. This leaves \(y = -(x + 3)^2 \). Then remove the negative sign preceding the parentheses, leaving \(y = (x + 3)^2 \). Finally, remove the addition of 3 within the parentheses, producing the function \(y = x^2 \). This is the quadratic parent function.

Identify the parent function for each of the following:

1. \(y = -2|x + 1| - 4 \)

2. \(y = 3(x - 1)^2 - 2 \)

3. \(y = 3 \cdot 2^{-x} + 1 \)

4. \(y = -3(x + 2) - 4 \)

5. \(y = \frac{3}{x} + 2 \)

6. \(y = \frac{3}{x + 2} \)

7. \(y = 3x^2 - 4 \)

8. \(y = -2(x - 1)^2 \)
Skill Q Understanding the effect of order on combining transformations

Recall To determine the order of transformations to a function, reverse the order of operations. Addition or subtraction indicates a vertical translation; multiplication or division indicates a vertical stretch; addition or subtraction within parentheses or within absolute-value symbols indicates a horizontal translation.

Example Describe the various transformations included in the equation \(y = 2|x - 1| + 3 \).

Solution The first operation to consider is the addition of 3. This affects the parent function by translating it vertically 3 units up. The second operation, multiplication by 2, stretches the translated function by a factor of 2. The third operation, subtraction of 1, translates the stretched function horizontally 1 unit to the right. Thus, the parent function, \(y = |x| \), has been shifted 1 unit to the right, stretched by a factor of 2, and then shifted 3 units up.

Describe the transformations of the parent functions included in each equation.

1. \(y = -3|x + 2| - 3 \)

2. \(y = 2(x - 3)^2 + 1 \)

3. \(y = 4|x - 1| + 2 \)

4. \(y = 4 \cdot 2^x - 2 \)
Skill S Solving 45-45-90 and 30-60-90 triangles

Recall

![Diagram of a 45-45-90 triangle and a 30-60-90 triangle]

Example
Find the lengths of the other 2 sides in each right triangle.

a.
\[
\begin{align*}
45^\circ & \quad x \\
_ & \quad __ \quad 5 \\
r & \quad 45^\circ \\
\end{align*}
\]

b.
\[
\begin{align*}
60^\circ & \quad r \\
_ & \quad __ \quad 6 \\
30^\circ & \quad y \\
\end{align*}
\]

Solution

a. \(a = 5\)

\[
x = a = 5
\]

\[
r = a\sqrt{2} = 5\sqrt{2}
\]

b. \(a\sqrt{3} = 6 \Rightarrow a = \frac{6}{\sqrt{3}}\) (or \(2\sqrt{3}\))

\[
y = a = \frac{6}{\sqrt{3}}\) (or \(2\sqrt{3}\))
\]

Find the missing side lengths in each right triangle.

1.
![Diagram of a 30-60-90 triangle with missing side lengths]

2.
![Diagram of a 45-45-90 triangle with missing side lengths]

3.
![Diagram of a 30-60-90 triangle with missing side lengths]

Skill T Finding exact values of the trigonometric functions for an angle whose reference angle is 30°, 45°, or 60°

Recall

![Diagram of right triangles with sides labeled]

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>30°</th>
<th>45°</th>
<th>60°</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sin \theta)</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{\sqrt{2}})</td>
<td>(\frac{\sqrt{3}}{2})</td>
</tr>
<tr>
<td>(\cos \theta)</td>
<td>(\frac{\sqrt{3}}{2})</td>
<td>(\frac{1}{\sqrt{2}})</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>(\tan \theta)</td>
<td>(\frac{1}{\sqrt{3}})</td>
<td>1</td>
<td>(\sqrt{3})</td>
</tr>
</tbody>
</table>
A reference angle is the positive acute angle between the terminal side of a given angle and the x-axis.

One mnemonic for remembering which functions are positive in each quadrant is “All students take calculus.”

◆ Example
Find each exact value.

a. \(\sin 315° \)

b. \(\cos 240° \)

c. \(\tan 210° \)

◆ Solution

a. \(315° \) is in Quadrant IV,

where sine is negative.

The reference angle is 45°.

\[
\sin 315° = -\sin 45° = -\frac{1}{\sqrt{2}}
\]

b. \(240° \) is in Quadrant III,

where cosine is negative. The reference angle is 60°.

\[
\cos 240° = -\cos 60° = -\frac{1}{2}
\]

c. \(210° \) is in Quadrant III,

where tangent is positive. The reference angle is 30°.

\[
\tan 210° = \tan 30° = \frac{1}{\sqrt{3}}
\]

Find each trigonometric value. Give exact answers.

1. \(\sin 120° \)

2. \(\cos 330° \)

3. \(\tan 225° \)

4. \(\cos 150° \)

5. \(\sin 240° \)

6. \(\sin 150° \)

7. \(\tan 315° \)

8. \(\cos 225° \)

◆ Skill

U

Finding the coordinates of a point \(P \) on a circle

Recall

If \(P(x, y) \) lies at the intersection of the terminal side of \(\theta \) in standard position and a circle centered at the origin with radius \(r \), then \(P(x, y) = P(r \cos \theta, r \sin \theta) \).

◆ Example

Find the coordinates of point \(P \) shown in the figure at right.

◆ Solution

\[
\cos 210° = -\cos 30° = -\frac{\sqrt{3}}{2}
\]

and

\[
\sin 210° = -\sin 30° = -\frac{1}{2}
\]

\[
r \cos \theta = 4\left(-\frac{\sqrt{3}}{2}\right) \text{ and } r \sin \theta = 4\left(-\frac{1}{2}\right)
\]

The coordinates of point \(P \) are \((-2\sqrt{3}, -2)\).

Point \(P \) is located at the intersection of a circle centered at the origin with a radius of \(r \) and the terminal side of angle \(\theta \) in standard position. Find the exact coordinates of point \(P \).

1. \(\theta = 135°, r = 6 \)

2. \(\theta = 30°, r = 10 \)

3. \(\theta = 300°, r = 12 \)
Finding exact values for the trigonometric functions of an angle measured in radians

Example
Give the exact value of each expression where the angle measures are in radians.

- a. \(\cos \frac{5\pi}{6} \)
- b. \(\tan \frac{4\pi}{3} \)
- c. \(\sin \left(-\frac{3\pi}{2} \right) \)

Solution
Use reference angles.

- a. \(\frac{5\pi}{6} \) radians = 150°
 \(\cos 150° = -\cos 30° = -\frac{\sqrt{3}}{2} \)
- b. \(\frac{4\pi}{3} \) radians = 240°
 \(\tan 240° = \tan 60° = \sqrt{3} \)
- c. \(-\frac{3\pi}{2} \) radians = -270°
 \(\sin(-270°) = \sin 90° = 1 \)

Evaluate each expression. Give exact answers.

1. \(\sin \frac{3\pi}{4} \)
2. \(\cos \frac{2\pi}{3} \)
3. \(\tan \frac{5\pi}{6} \)
4. \(\cos \left(-\frac{7\pi}{6} \right) \)
5. \(\tan \left(-\frac{\pi}{4} \right) \)
6. \(\sin \pi \)
Skill W

Converting between degree and radian measure

Recall

\[\pi \text{ radians} = 180^\circ, \text{ so } \frac{\text{degree measure}}{180} = \frac{\text{radian measure}}{\pi}. \]

Example 1

Convert the following to radian measure.

a. \(50^\circ\)

Solution

\[
\begin{align*}
50^\circ &= \frac{x}{\pi} \\
180x &= 50\pi \\
x &= \frac{50\pi}{180} \\
&= \frac{5\pi}{18} \\
50^\circ &= \frac{5\pi}{18} \text{ radians}
\end{align*}
\]

b. \(-150^\circ\)

Solution

\[
\begin{align*}
-150^\circ &= \frac{x}{\pi} \\
180x &= -150\pi \\
x &= \frac{-150\pi}{180} \\
&= -\frac{5\pi}{6} \\
-150^\circ &= -\frac{5\pi}{6} \text{ radians}
\end{align*}
\]

Example 2

Convert the following to degree measure.

a. \(\frac{2}{3}\pi\) radians

Solution

\[
\begin{align*}
\frac{2}{3}\pi &= \frac{x}{\pi} \\
\pi x &= \frac{2}{3}\pi(180^\circ) \\
x &= 120^\circ \\
\frac{2}{3}\pi \text{ radians} &= 120^\circ
\end{align*}
\]

b. \(-\frac{7}{4}\pi\) radians

Solution

\[
\begin{align*}
-\frac{7}{4}\pi &= \frac{x}{\pi} \\
\pi x &= -\frac{7}{4}\pi(180^\circ) \\
x &= -315^\circ \\
-\frac{7}{4}\pi \text{ radians} &= -315^\circ
\end{align*}
\]

Convert the following degree measures to radian measures. Give exact answers.

1. \(270^\circ\)
2. \(45^\circ\)
3. \(225^\circ\)
4. \(210^\circ\)
5. \(-90^\circ\)
6. \(-300^\circ\)

Convert each of the following radian measures to degree measures.

7. \(\frac{\pi}{4}\)
8. \(\frac{3\pi}{2}\)
9. \(\frac{5\pi}{6}\)
10. \(\frac{5\pi}{3}\)
11. \(-3\pi\)
12. \(-\frac{11\pi}{6}\)
Skill X Using the 45-45-90 Triangle Theorem and the 30-60-90 Triangle Theorem

Recall
A 45-45-90 triangle is a right triangle in which both acute angles have measure 45°. In a 45-45-90 triangle, if the length of each leg is x, the length of the hypotenuse is $x\sqrt{2}$. If the length of the hypotenuse is x, then the length of each leg is $\frac{x}{\sqrt{2}}$ or $\frac{x\sqrt{2}}{2}$.

A 30-60-90 triangle is a right triangle in which the acute angles have measures of 30° and 60°. The shorter leg of the triangle is opposite the 30° angle and the longer leg is opposite the 60° angle. In a 30-60-90 triangle, if the length of the shorter leg is x, then the length of the longer leg is $x\sqrt{3}$, and the length of the hypotenuse is $2x$.

Example
a. The legs of a 45-45-90 triangle are each 15 centimeters long. Find the length, h, of the hypotenuse to the nearest tenth of a centimeter.
b. The longer leg of a 30-60-90 triangle is 5 inches long. Find the length, h, of the hypotenuse in simplest radical form.

Solution
a. Refer to the 45-45-90 triangle in the figure above. Since $x = 15$,
$h = x\sqrt{2} = 15\sqrt{2} \approx 21.2$ centimeters.
b. Refer to the 30-60-90 triangle in the figure above. Since $x\sqrt{3} = 5$,
$x = \frac{5}{\sqrt{3}} = \frac{5\sqrt{3}}{3}$ and $h = 2x = \frac{10\sqrt{3}}{3}$ inches.

The length of one side of a 45-45-90 triangle is given. Find the lengths of the other two sides in simplest radical form.

1. $d = 13, e = \underline{}$
 $f = \underline{}$

2. $d = 4, e = \underline{}$
 $f = \underline{}$

3. $e = 4.5, f = \underline{}$
 $d = \underline{}$

4. $f = 9\sqrt{2}, d = \underline{}$

5. $d = \underline{}$
 $e = \underline{}$

The length of one side of a 30-60-90 triangle is given. Find the lengths of the other two sides in simplest radical form.

5. $x = 4, y = \underline{}$
 $z = \underline{\sqrt{3}}$

6. $x = 3\sqrt{3}, z = \underline{}$
 $y = \underline{}$

7. $y = 7\sqrt{3}, x = \underline{}$
 $z = \underline{}$

8. $y = 18, z = \underline{}$
 $x = \underline{\sqrt{3}}$
Skill Y Finding the trigonometric functions of an acute angle

Recall The hypotenuse is the longest side in a right triangle and is opposite the right angle.

Example Refer to the triangle shown at right and give values for \(\sin \theta \), \(\cos \theta \), \(\tan \theta \), \(\cot \theta \), \(\sec \theta \), and \(\csc \theta \).

Solution
The hypotenuse (hyp.) has a length of \(\sqrt{41} \).
The leg opposite (opp.) \(\theta \) has a length of 4.
The leg adjacent (adj.) to \(\theta \) has a length of 5.

\[
\begin{align*}
\sin \theta &= \frac{\text{opp.}}{\text{hyp.}} = \frac{4}{\sqrt{41}} \\
\csc \theta &= \frac{\text{hyp.}}{\text{opp.}} = \frac{\sqrt{41}}{4} \\
\cos \theta &= \frac{\text{adj.}}{\text{hyp.}} = \frac{5}{\sqrt{41}} \\
\sec \theta &= \frac{\text{hyp.}}{\text{adj.}} = \frac{\sqrt{41}}{5} \\
\tan \theta &= \frac{\text{opp.}}{\text{adj.}} = \frac{4}{5} \\
\cot \theta &= \frac{\text{adj.}}{\text{opp.}} = \frac{5}{4}
\end{align*}
\]

Refer to the triangle at right to find each value. Give exact answers.

1. \(\sin \theta \)
2. \(\cos \theta \)
3. \(\tan \theta \)
4. \(\csc \theta \)
5. \(\sec \theta \)
6. \(\cot \theta \)
7. \(\sin \phi \)
8. \(\cos \phi \)
9. \(\tan \phi \)
10. \(\csc \phi \)
Skill: Using inverse trigonometric functions to find the measure of an acute angle.

Recall: The statements \(\tan \theta = \frac{5}{7} \) and \(\theta = \tan^{-1}\left(\frac{5}{7}\right) \) are equivalent.

Example:
In the triangle shown at right, find the measure of \(\theta \) to the nearest whole degree.

Solution:
Since the hypotenuse and the side adjacent to \(\theta \) are given, use the cosine function.

\[
\cos \theta = \frac{\text{adj.}}{\text{hyp.}} = \frac{5}{7}
\]

\[
\theta = \cos^{-1}\left(\frac{5}{7}\right) \approx 44^\circ \quad \text{Use your calculator in degree mode.}
\]

Find \(\theta \) to the nearest degree in each triangle.

1. [Diagram of triangle with sides 8 and 10]

2. [Diagram of triangle with sides 9 and 13]

3. [Diagram of triangle with sides 20 and 10]
◆ Skill AA Solving a right triangle

Recall *Solving a triangle* means to use given measures to find the unknown measures of the other sides and angles of the triangle.

◆ Example 1
Solve the triangle shown at right.

◆ Solution
Using the hypotenuse and side opposite ∠A,

\[\sin \angle A = \frac{8}{12} \]

\[m \angle A = \sin^{-1} \left(\frac{8}{12} \right) \approx 42^\circ \quad \text{Round to the nearest whole degree.} \]

\[m \angle A + m \angle B = 90^\circ \]

\[42^\circ + m \angle B = 90^\circ \]

\[m \angle B \approx 48^\circ \]

◆ Example 2
Solve the triangle shown at right.

◆ Solution
Using the side adjacent to ∠M,

\[\cos 70^\circ = \frac{6}{LM} \] where LM is the hypotenuse.

\[LM = \frac{6}{\cos 70^\circ} \approx 17.5 \]

\[(LN)^2 + (MN)^2 = (LM)^2 \]

\[LN \approx \sqrt{17.5^2 - 6^2} \approx 16.4 \]

Solve each triangle. Round each angle measure to the nearest degree and each side length to the nearest tenth.

1.
![Diagram](image1)

2.
![Diagram](image2)

3.
![Diagram](image3)
Skill BB Evaluating inverse trigonometric relations and functions

Recall The domain and range of a function become the range and domain respectively, of the inverse.

Example 1
Find each value. Give answers in degrees and radians.

- **a.** \(\sin^{-1} \left(\frac{\sqrt{2}}{2} \right) \)
- **b.** \(\cos^{-1} \left(-\frac{1}{2} \right) \)
- **c.** \(\tan^{-1}(-1) \)

Solution

- **a.** Since \(\sin 60^\circ = \frac{\sqrt{3}}{2} \), then \(\sin^{-1} \left(\frac{\sqrt{3}}{2} \right) = 60^\circ \) or \(\frac{\pi}{3} \) radians. Notice that although other angles have a sine of \(\frac{\sqrt{3}}{2} \), you must choose an angle that is between \(-90^\circ\) and \(90^\circ\) in order to have a value in the appropriate range.

- **b.** Since \(\cos 120^\circ = -\frac{1}{2} \), then \(\cos^{-1} \left(-\frac{1}{2} \right) = 120^\circ \) or \(\frac{2\pi}{3} \) radians.

- **c.** Since \(\tan(-45^\circ) = -1 \), then \(\tan^{-1}(-1) = -45^\circ \) or \(-\frac{\pi}{4} \) radians.

Example 2
Evaluate each expression.

- **a.** \(\sin \left(\cos^{-1} \left(\frac{1}{2} \right) \right) \)
- **b.** \(\tan^{-1}(\sin 90^\circ) \)

Solution

- **a.** Begin inside the parentheses.
 \(\cos^{-1} \left(\frac{1}{2} \right) = 60^\circ \)
 Therefore, \(\tan^{-1}(\sin 90^\circ) = \tan^{-1}(1) \)
 So, \(\sin \left(\cos^{-1} \left(\frac{1}{2} \right) \right) = \sin 60^\circ = \frac{\sqrt{3}}{2} = 45^\circ \) or \(\frac{\pi}{4} \) radians

Find each value. Give answers in degrees and in radians. (It may be helpful to review what you learned about 30°-, 45°-, and 60°-angles.)

1. \(\sin^{-1} \left(\frac{1}{2} \right) \)
2. \(\cos^{-1} \left(-\frac{1}{\sqrt{2}} \right) \)
3. \(\tan^{-1} \left(\sqrt{3} \right) \)

4. \(\sin^{-1}(-1) \)
5. \(\cos^{-1} \left(\frac{\sqrt{3}}{2} \right) \)
6. \(\tan^{-1}(-1) \)

Evaluate each composite trigonometric expression.

7. \(\tan(\cos^{-1} \left(\frac{\sqrt{3}}{2} \right)) \)
8. \(\cos(\sin^{-1} \left(\frac{1}{\sqrt{2}} \right)) \)
9. \(\sin(\tan^{-1} \left(-\frac{1}{\sqrt{3}} \right)) \)

10. \(\sin^{-1}(\cos 0^\circ) \)
11. \(\tan^{-1}(\sin 0^\circ) \)
12. \(\sin^{-1}(\sin 90^\circ) \)
Skill CC

Recall

\[
\sin \theta = \frac{\text{opp.}}{\text{hyp.}} \quad \cos \theta = \frac{\text{adj.}}{\text{hyp.}} \quad \tan \theta = \frac{\text{opp.}}{\text{adj.}}
\]

Example

At a certain time of the day, the 5 meter flagpole shown at right casts a shadow that is 3 meters long. What is the angle of elevation of the sun at this time?

Solution

Since 3 meters is the length of the side adjacent to \(\theta \) and 5 meters is the length of the side opposite \(\theta \), use the tangent function.

\[
\tan \theta = \frac{3}{5}
\]

\[
\theta = \tan^{-1}\left(\frac{3}{5}\right)
\]

This last equation states that \(\theta \) is the angle that has a tangent of \(\frac{3}{5} \).

\[
\theta \approx 59^\circ \quad \text{Use calculator in degree mode.}
\]

Find the measure of each angle to the nearest whole degree.

1. Find the measure of the smallest angle in a right triangle with sides of 3, 4, and 5 centimeters.

2. What is the angle between the bottom of the ladder and the ground as shown at right?

3. Find the angle at the peak of the roof as shown at right.

4. The hypotenuse of a right triangle is 3 times as long as the shorter leg. Find the measure of the angle between the shorter leg and the hypotenuse.
Skill DD

Graphing functions of the form \(y = a \sin b\theta \), \(y = a \cos b\theta \), and \(y = a \tan b\theta \)

Recall

The sine and cosine are periodic functions with a period of \(360^\circ \) or \(2\pi \) radians. The tangent function has a period of \(180^\circ \) or \(\pi \) radians.

Example 1

Graph \(y = \sin \theta \), \(y = 2 \sin \theta \), and \(y = \sin 2\theta \) on the same set of axes.

Solution

The graph of \(y = a \sin b\theta \) has an amplitude (height above x-axis) of \(|a|\)
and period of \(\frac{360^\circ}{b} \).

<table>
<thead>
<tr>
<th>function</th>
<th>amplitude</th>
<th>period</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y = \sin \theta)</td>
<td>1</td>
<td>(360^\circ)</td>
</tr>
<tr>
<td>(y = 2 \sin \theta)</td>
<td>2</td>
<td>(360^\circ)</td>
</tr>
<tr>
<td>(y = \sin 2\theta)</td>
<td>1</td>
<td>(180^\circ)</td>
</tr>
</tbody>
</table>

Check your results with a graphics calculator.

Example 2

Graph \(y = \sin \theta \) and \(y = -\sin \theta \) on the same set of axes.

Solution

Notice that the graph of \(y = -\sin \theta \) is the reflection of \(y = \sin \theta \) across the (horizontal) \(\theta \)-axis.

Sketch each pair of functions on the same set of axes. Use \(0^\circ \leq \theta \leq 360^\circ \).

1. \(y = \cos \theta, y = \frac{1}{2} \cos \theta \)
2. \(y = \cos \theta, y = \cos 3\theta \)
3. \(y = \tan \theta, y = -\tan \theta \)
4. \(y = \tan \theta, y = \tan \frac{1}{2} \theta \)
Skill EE

Graphing functions of the form \(y = \sin(x - c) + d \), \(y = \cos(x - c) + d \), and \(y = \tan(x - c) + d \)

Recall

The graph of \(y = \sin(x - c) \) is a phase shift (horizontal translation) of the graph of \(y = \sin x \) to the right \(c \) units.
The graph of \(y = \sin x + d \) is a vertical shift of the graph of \(y = \sin x \) up \(d \) units.

Example 1

Graph \(y = \sin x \) and \(y = \sin \left(x + \frac{\pi}{4}\right) \) on the same set of axes.

Solution

\[
\begin{align*}
 y &= \sin x \\
 y &= \sin \left(x + \frac{\pi}{4}\right)
\end{align*}
\]

phase shift of \(\frac{\pi}{4} \) units to the left

Example 2

Graph \(y = \sin x \) and \(y = \sin x - 2 \) on the same set of axes.

Solution

\[
\begin{align*}
 y &= \sin x \\
 y &= \sin x - 2
\end{align*}
\]

vertical shift of 2 units down

Sketch each pair of functions on the same set of axes. Use \(-\frac{\pi}{2} \leq x \leq 2\pi\).

1. \(y = \cos x, \ y = \cos \left(x - \frac{\pi}{2}\right) \)

2. \(y = \cos x, \ y = \cos x + 1 \)

3. \(y = \tan x, \ y = -\tan \left(x + \frac{\pi}{4}\right) \)

4. \(y = \tan x, \ y = \tan x - 1 \)
Verifying the fundamental trigonometric identities

Recall
\[\csc \theta = \frac{1}{\sin \theta}, \sec \theta = \frac{1}{\cos \theta}, \cot \theta = \frac{1}{\tan \theta} \]
Also, \(\sin^2 \theta = (\sin \theta)(\sin \theta) \) or \((\sin \theta)^2 \), which is the form you will need to enter into your graphics calculator.

♦ Example
Use a calculator to verify that
\[\cot \theta = \frac{\cos \theta}{\sin \theta}. \]

♦ Solution
Graph \(y_1 = \frac{1}{\tan \theta} \) (for \(\cot \theta \))
and \(y_2 = \frac{\cos \theta}{\sin \theta}. \)
The graphs match exactly.

Verify each identity by graphing each side separately. Sketch the common graph.

1. \(\tan \theta = \frac{\sin \theta}{\cos \theta} \)

2. \(\sin^2 \theta + \cos^2 \theta = 1 \)

3. \(\tan^2 \theta + 1 = \sec^2 \theta \)

4. \(1 + \cot^2 \theta = \csc^2 \theta \)
Skill GG: Simplifying expressions by using basic trigonometric identities

Recall: Since $\sin^2 \theta + \cos^2 \theta = 1$, then $\sin^2 \theta = 1 - \cos^2 \theta$ and $\cos^2 \theta = 1 - \sin^2 \theta$.

Example 1
Simplify $\csc \theta \tan \theta$ to $\sec \theta$.

Solution
\[
\csc \theta \tan \theta = \frac{1}{\sin \theta} \cdot \frac{\sin \theta}{\cos \theta} \quad \text{fundamental identities}
\]
\[
= \frac{1}{\cos \theta}
\]
\[
= \sec \theta \quad \text{fundamental identity}
\]

Example 2
Simplify $(\sec \theta - 1)(\sec \theta + 1)$ to $\tan^2 \theta$.

Solution
\[
(\sec \theta - 1)(\sec \theta + 1) = \sec^2 \theta - 1
\]
\[
= \tan^2 \theta + 1 - 1 \quad (a - b)(a + b) = a^2 - b^2
\]
\[
= \tan^2 \theta \quad \text{fundamental identity}
\]

For exercises 5–10, show on your own paper how the first expression simplifies to the second expression.

1. $\sin x \cot x$ to $\cos x$
2. $\sin x \sec x \cot x$ to 1
3. $\cos^2 x - \sin^2 x$ to $1 - 2 \sin^2 x$
4. $(1 + \sin x)(1 - \sin x)$ to $\cos^2 x$
5. $\tan x + \cot x$ to $\sec x \csc x$
6. $(\cos x - \sin x)^2$ to $1 - 2 \cos x \sin x$
Complete the following problems listed below. SHOW ALL WORK! This includes graphs used on your graphing calculator.

L2.1 page 66-67:

#8-14 (even only)
#19-22
#29-30
#37-44
#49-54

L2.2 page 76:

#2-8 (even)
#14-34 (even)
#35-38
#39-42
AP Calculus Summer Assignment Part 3 of 3: Continuity, I.V.T. & Rates of Change

Complete the following problems listed below. SHOW ALL WORK! This includes graphs used on your graphing calculator.

L2.3 page 84-85:

#1-16

#25-30

L2.4 page 92-93:

#1-6

#9-10

#23-24

#29-30